	Technical Documentation
	Version 1.0
	1 / 7

	Project Course 2023-2024
	Last saved by Adnan Ashraf /

 7 September 2023
	ProjectName_TechnicalDocumentation_v01

	Project Name
	Technical Documentation
	Version 1.0
	5 / 7

PROJECT NAME
Technical Documentation
Version 1.0
Note: set Project name, author and version number in the document properties!!!
Project Manager: name (email address)
Project Members:

name (email address)

name (email address)

name (email address)

name (email address)

Revision History

	Date
	Version
	Description
	Author

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents

1Technical Documentation

1Revision History

31
Product Requirements

31.1
Requirements Specification

41.1.1
Functional Requirements

41.1.2
User Interface Requirements

51.1.3
Non-functional Requirements

51.2
Scrum-Like Requirements Specification:

52
System Architecture and Design

52.1
Architecture

62.2
Design

62.2.1
Static Design

62.2.2
Dynamic Design

62.2.3
Design of User Interface

62.2.4
Databases

63
Implementation

63.1
Technologies

73.2
Classes, Components

73.3
Interfaces

74
References

1 Product Requirements
The purpose of this section is to list the functional and non-functional requirements identified for the product. The requirements identification (elicitation and analysis) should be done via different techniques analysis of existing systems, root cause analysis, interviews and surveys with stakeholders, etc.
Requirements identification should take into account the following information:

Requirements definition is a general statement in a natural language of

· What is the purpose of building the system
· To which class of systems your system belongs

· What user services the system is expected to provide.

· Who are potential users of the system (brief description of your user profile: skills required, technical background)

· User stories (scenarios), e.g., “as a regular user I would like to be able to change the colour of the GUI depending on the time of the day”.
It should be written so that non-specialists can understand it.

It should NOT include implementation details.
The requirements definition suffices to be around 200 words long.
1.1 Requirements Specification

The requirements specification needs to be precise, so it may act as a contract between the customer and software developer. It needs to be understandable to technical staff from both customers and developers.

Each requirement could be specified using the following template:

	Requirement Id
	REQ-1.1.2.3

	Requirement description
	The system should be blue…

	Requirement priority
	(1- high, 2- average, 3- low, 4 - optional)

	Requirement dependencies
	depends on REQ-12.4.5

specializes REQ-1.1.2

specialized by REQ-1.1.2.3.1

	Input
	The user pushes button x

	Output
	The light is now on

	Actors using the requirement
	User 1 and User 5

An alternative is to use structured text, as follows:

FRQ1. Functional Requirement Name
Description:

Priority:

Dependencies….

 Source (which stakeholder requires it)

 Source (which stakeholder requires it)

 Conflicts with other requirements. 1.1.2

FRQ1.1. Sub-requirement

Description:

Priority:

Dependencies….

 Source (which stakeholder requires it)

 Source (which stakeholder requires it)

 Conflicts with other requirements. 1.1.2

FRQ2. Functional Requirement Name
FRQ2.1. Sub-requirement
Description:

Priority:

Dependencies….

Source (which stakeholder requires it)
Conflicts with other requirements. 1.1.2

The requirements specification consists of the following parts:

1.1.1 Functional Requirements
· This part of the requirements specification should describe what the product should do. We recommend explaining the system functionality with use case diagrams
.
[image: image1.png]Customer

Online Shopping System

| <cinclude>>

Complete
checkout

<service>>
Authentication

Identity Provider

—A

Credit Payment Service

A

PayPal

1.1.2 User Interface Requirements
· Describe what your customer requires from the interface. (You might include snapshots of a prototype, sketches of windows, menus, input/output forms etc.)

· Describe how does your user interface support the user in achieving the desired functionality. (Here also state what is correct and what is incorrect user behavior and how the system should react on the incorrect behavior)

1.1.3 Non-functional Requirements

· A non-functional system requirement is a restriction or constraint placed on a system service. They may arise because of user needs, because of budget constraints, because of need for inter-operability with other software or hardware systems or because of external factors such as availability, safety, security etc.

· Describe here (if relevant) what are the safety requirements, performance requirements, any requirements necessary to support your application (requirements to operating system/platform/ hardware supporting your system etc.)

1.2 Scrum-Like Requirements Specification:
In Scrum a backlog can typically consist of wo types of backlog items: User stories and Bugs.
Scrum recommends the use of user stories as a mean to clarify product requirements with the customer. A user story is typically specified in the form: “As a user I would like to…”. Additional properties can be attached to the user story such as:

· Feature to which belongs

· Priority

· Estimated effort

· Tasks required to implement

· Dependency to other user stories

One possible template for specifying a user story is the following:
	ID
	Type
	As a/an
	I want to …
	So that ….
	Priority
	Estimated Effort
	Status
	Notes

	3
	Non-functional
	user
	I want the webpage to load in less than 2 seconds
	I do not abandon browsing
	high
	1 day
	Not done
	

2 System Architecture and Design

2.1 Architecture
The architecture of a system is its 'skeleton'.

· Give in this section a high-level description of the system structure, for instance, by describing what are the main system components (or modules) and how they interact with each other.

· Do not explain in detail in this section the internal structure of the components but rather state what the purpose of their existence is. This essentially means describing how are the requirements distributed to /attributed to /implemented by different components.

· Explain the relationship between the system architecture and the use case diagram.

· Here you might attach UML component diagrams or package diagrams.

2.2 Design

Design individual components.
2.2.1 Static Design

· Explain the static structure of the system.

· You may use class and object diagrams in the description. To explain your class diagram, you might include CRC cards or list the class responsibilities. Connect your diagrams to the system architecture by explaining which class belongs to which component.

· Remember: as this section is supposed to give only a static view to the system, do not describe here object calls and methods.

Note that you might have to write the section “Dynamic Design” below at the same time as you write this section, because they depend on each other.

2.2.2 Dynamic Design
· Describe how the objects interact with each other.

· You may use interaction diagrams (sequence diagrams), state machine diagrams, and activity diagrams in the description.

· Connect your diagrams with the use cases you identified. The aim is to demonstrate that all the requirements are captured by your design, i.e., each use case can be realized by a certain interaction between your objects. Include diagrams at least for several central use cases.

2.2.3 Design of User Interface

Describe how the user interface given in Section 1.2.2 relates to your design. You might include collaboration diagrams to illustrate how user’s input is handled by your design. Show that your design is sufficient to process both correct and incorrect user’s input. Show what kind of exceptions can be raised and how they are handled by your objects.

2.2.4 Databases

· Describe your databases using entity-relationship diagrams.
· Describe how the databases is used by the system.

· You may use SQL, pseudo-algorithms, etc.

3 Implementation

3.1 Technologies
Describe in this section what technologies, programming languages, operating systems, database systems have been used.
3.2 Classes, Components
Provide here the implementation class diagram with methods and attributes. Your source code should be well-commented.
3.3 Interfaces

Describe here for each interface:

-the set of operations that it provides

-how the operations link to the classes

4 References

List of the books, software, www sites that you refer (avoid Wikipedia)
� �HYPERLINK "https://www.lucidchart.com/pages/uml-use-case-diagram"�https://www.lucidchart.com/pages/uml-use-case-diagram�

PAGE
5

